1.在数列{an}中,a1=1,数列{an+1-3an}是首项为9,公比为3的等比数列.
(1)求a2,a3;
(2)求数列的前n项和Sn.
解:(1)∵数列{an+1-3an}是首项为9,公比为3的等比数列,
∴an+1-3an=9×3n-1=3n+1,
∴a2-3a1=9,a3-3a2=27,
∴a2=12,a3=63.
(2)∵an+1-3an=3n+1,∴-=1,
∴数列是首项为,公差为1的等差数列,
∴数列的前n项和Sn=+=.
2.已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n(n∈N*).
(1)求f(x)的解析式;
(2)若数列{an}满足=f′,且a1=4,求数列{an}的通项公式.