1.不等式|x-1|-|x-5|<2的解集是( )
A.(-∞,4) B.(-∞,1)
C.(1,4) D.(1,5)
答案 A
解析 当x<1时,不等式可化为-(x-1)+(x-5)<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x≤5时,不等式可化为x-1+(x-5)<2,即2x-6<2,解得x<4,又1≤x≤5,所以此时不等式的解集为[1,4);当x>5时,不等式可化为(x-1)-(x-5)<2,即4<2,显然不成立,所以此时不等式无解.综上,不等式的解集为(-∞,4).故选A.
2.若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是________.
答案
解析 设y=|2x-1|+|x+2|=