1.设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[tn]=n同时成立,则正整数n的最大值是( )
A.3 B.4
C.5 D.6
答案 B
解析 由[t]=1,得1≤t<2.由[t2]=2,得2≤t2<3.由[t4]=4,得4≤t4<5,所以2≤t2<.由[t3]=3,得3≤t3<4,所以6≤t5<4.由[t5]=5,得5≤t5<6,与6≤t5<4矛盾,故正整数n的最大值是4.
2.若a>b>0,c<d<0,则一定有( )
A.> B.<
C.> D.<
答案 D
解析 ∵c<d<0,∴-c>-d>0,