第4节碰撞
[随堂检测]
1.(多选)在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是( )
A.若两球质量相等,碰后以某一相等速率互相分开
B.若两球质量相等,碰后以某一相等速率同向而行
C.若两球质量不等,碰后以某一相等速率互相分开
D.若两球质量不等,碰后以某一相等速率同向而行
解析:选AD.对选项A,碰撞前两球总动量为零,碰撞后总动量也为零,动量守恒,所以选项A是可能的;对选项B,若碰撞后两球以某一相等速率同向而行,则两球的总动量不为零,而碰撞前总动量为零,所以选项B不可能;对选项C,碰撞前、后系统的总动量的方向不同,所以动量不守恒,选项C不可能;对选项D,碰撞前总动量不为零,碰撞后总动量也不为零,方向可能相同,所以选项D是可能的.
2.如图所示,质量相等的A、B两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A球的速度是6 m/s,B球的速度是-2 m/s,不久A、B两球发生了对心碰撞.对于该碰撞之后的A、B两球的速度可能值,某实验小组的同学们做了很多种猜测,下面的猜测结果一定无法实现的是( )
A.v′A=-2 m/s,v′B=6 m/s
B.v′A=2 m/s,v′B=2 m/s
C.v′A=1 m/s,v′B=3 m/s
D.v′A=-3 m/s,v′B=7 m/s
解析:选D.两球碰撞前后应满足动量守恒定律及碰后两球的动能之和不大于碰前两球的动能之和.即mAvA+mBvB=mAvA′+mBvB′①,mAv+mBv≥mAv′+mBv′②,答案D中满足①式,但不满足②式,所以D选项错误.
3.(2016·高考海南卷)如图所示,物块A通过一不可伸长的轻绳悬挂在天花板下,初始时静止;从发射器(图中未画出)射出的物块B沿水平方向与A相撞,碰撞后两者粘连在一起运动;碰撞前B的速度的大小v及碰撞后A和B一起上升的高度h均可由传感器(图中未画出)测得.某同学以h为纵坐标,v2为横坐标,利用实验数据作直线拟合,求得该直线的斜率为k=1.92×10-3 s2/m.已知物块A和B的质量分别为mA=0.400 kg和mB=0.100 kg,重力加速度大小g=9.80 m/s2.
(1)若碰撞时间极短且忽略空气阻力,求h-v2直线斜率的理论值k0;
(2)求k值的相对误差δ(.
解析:(1)设物块A和B碰撞后共同运动的速度为v′,由动量守恒定律有
mBv=(mA+mB)v′①
在碰撞后A和B共同上升的过程中,由机械能守恒定律有
(mA+mB)v′2=(mA+mB)gh②
联立①②式得h=v2③
由题意得k0=④
代入题给数据得k0≈2.04×10-3 s2/m.⑤
(2)按照定义δ=×100%⑥
由⑤⑥式及题给条件得δ≈6%.⑦
答案:(1)2.04×10-3 s2/m (2)6%
4.如图所示,在光滑的水平面上有一质量为M的长木板,以速度v0向右做匀速直线运动,将质量为m的小铁块轻轻放在木板上的A点,这时小铁块相对地面速度为零,小铁块相对木板向左滑动.由于小铁块和木板间有摩擦,最后它们之间相对静止,已知它们之间的动摩擦因数为μ,问:
(1)小铁块跟木板相对静止时,它们的共同速度多大?
(2)它们相对静止时,小铁块与A点距离多远?
(3)在全过程中有多少机械能转化为内能?
解析:(1)木板与小铁块组成的系统动量守恒.以v0的方向为正方向,由动量守恒定律得,
Mv0=(M+m)v′,则v′=.
(2)由功能关系可得,摩擦力在相对位移上所做的功等于系统动能的减少量,μmgx相=Mv-(M+m)v′2.
解得x相=.
(3)由能量守恒定律可得,
Q=Mv-(M+m)v′2=.
答案:(1) (2) (3)