[考纲解读] 1.理解并掌握二次函数的定义、图象及性质,能利用二次函数、二次方程与二次不等式之间的关系解决简单问题.(重点、难点)
2.掌握幂函数的图象和性质,结合函数y=x,y=x2,y=x3,y=,y=x的图象,了解它们的变化情况.(重点)
[考向预测] 从近三年高考情况来看,本讲是高考中的一个热点内容.预测2020年高考对二次函数可能会直接考查,也可能会与其他知识相结合进行考查,考查三个二次之间的关系、函数最值的求解、图象的判断等.在解答题中也可能会涉及二次函数.幂函数的考查常与其他知识结合,比较大小、图象及性质的应用为重点命题方向.
1.二次函数
(1)二次函数解析式的三种形式
①一般式:f(x)=ax2+bx+c(a≠0).
②顶点式:f(x)=a(x-m)2+n(a≠0).
③两根式:f(x)=a(x-x1)(x-x2)(a≠0).
(2)二次函数的图象和性质
解析式
|
f(x)=ax2+bx+c(a>0)
|
f(x)=ax2+bx+c(a<0)
|
图象
|
|
定义域
|
R
|
R
|