A.在区间(-2,1)上f(x)是增函数
B.在区间(1,3)上f(x)是减函数
C.在区间(4,5)上f(x)是增函数
D.当x=2时,f(x)取到极小值
答案 C
解析 观察y=f′(x)的图象可知,f(x)在区间(-2,1)上先减后增,在区间(1,3)上先增后减,在区间(4,5)上是增函数,当x=2时,f(x)取到极大值,故只有C正确.
(2)f(x)=x3-6x2的单调递减区间为( )
A.(0,4) B.(0,2)
C.(4,+∞) D.(-∞,0)
答案 A
解析 f′(x)=3x2-12x=3x(x-4),由f′(x)<0得0<x<4,所以f(x)的单调递减区间为(0,4).
(3)函数f(x)=(x-3)ex的单调递增区间是( )
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)
答案 D
解析 函数f(x)=(x-3)ex的导数为f′(x)=[(x-3)ex]′=ex+(x-3)ex=(x-2)ex.由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)单调递增,此时由不等式f′(x)=(x-2)ex>0,解得x>2.
(4)已知f(x)=x3-ax在[1,+∞)上是增函数,则a的最大值是________.
答案 3
解析 由题意得,f′(x)=3x2-a≥0对x∈[1,+∞)恒成立,即a≤3x2对x∈[1,+∞)恒成立,所以a≤3.
经检验a=3也满足题意,所以a的最大值是3.