1.三角函数式的化简遵循的三个原则
(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的变换,从而正确使用公式.
(2)二看“名”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”或“弦化切”.
(3)三看“形”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”“遇到平方要降幂”等.
2.三角恒等式的证明方法
(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目.
(2)等式两边同时变形,变形后的结果为同一个式子.
(3)先将要证明的式子进行等价变形,再证明变形后的式子成立.
1.+2的化简结果为________.
答案 -2sin4
解析 原式=+2
=2|cos4|+2|sin4-cos4|,因为<4<,
所以cos4<0,且sin4,
所以原式=-2cos4-2(sin4-cos4)=-2sin4.
2.证明:sinα-sinβ=2sincos.
证明 因为α=+,β=-,