1.平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.
2.平面向量的坐标运算
设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=,|a+b|=.
3.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0.
1.概念辨析
(1)平面内的任何两个向量都可以作为一组基底.( )
(2)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( )
(3)设a,b是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.( )
(4)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示成=.( )
答案 (1)× (2)√ (3)√ (4)×
2.小题热身