设a>0,b>0,则a、b的算术平均数为,几何平均数为,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.
2.利用基本不等式求最值问题
已知x>0,y>0,则:
(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2(简记:积定和最小).
(2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是(简记:和定积最大).
注:应用基本不等式求最值时,必须考察“一正、二定、三相等”,忽略某个条件,就会出现错误.
3.几个重要的不等式
(1)a2+b2≥2ab(a,b∈R).
(2)+≥2(a,b同号).
(3)ab≤2(a,b∈R).
(4)2≤(a,b∈R),
2(a2+b2)≥(a+b)2(a,b∈R).
(5)≥≥ab(a,b∈R).
(6)≥≥≥(a>0,b>0).
1.概念辨析