用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 学案 >> 物理学案
高中物理编辑
2019-2020学年高中物理全册模块要点回眸第8点电磁感应中的动力学问题学案粤教版选修3-2
下载扣点方式下载扣点方式
需消耗2金币 立即下载
1个贡献点 立即下载
1个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除点数
0
0
资源简介
第8点 电磁感应中的动力学问题
电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程,再趋于一个稳定状态,故解这类问题时正确地进行动态分析,确定最终状态是解题的关键.
1.受力情况、运动情况的动态分析及思路
导体受力运动产生感应电动势→感应电流→通电导体受安培力→合力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至最终达到稳定状态,此时加速度为零,而导体通过加速达到最大速度做匀速直线运动或通过减速达到稳定速度做匀速直线运动.
2.解决此类问题的基本思路
解决电磁感应中的动力学问题的一般思路是“先电后力”.
(1)“源”的分析——分析出电路中由电磁感应所产生的电源,求出电源参数Er
(2)“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力;
(3)“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;
(4)“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.
3.两种状态处理
(1)导体处于平衡状态——静止状态或匀速直线运动状态.
处理方法:根据平衡条件(合外力等于零),列式分析.
(2)导体处于非平衡状态——加速度不为零.
处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.
4.电磁感应中的动力学临界问题
(1)解决这类问题的关键是通过运动状态的分析寻找过程中的临界状态,如由速度、加速度求最大值或最小值的条件.
(2)基本思路
注意 当导体切割磁感线运动存在临界条件时:
(1)若导体初速度等于临界速度,导体匀速切割磁感线;
(2)若导体初速度大于临界速度,导体先减速,后匀速运动;
(3)若导体初速度小于临界速度,导体先加速,后匀速运动.
对点例题  如图1甲所示,两根足够长的平行金属导轨MNPQ相距为L,导轨平面与水平面夹角为α,金属棒ab垂直于MNPQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m,导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B.金属导轨的上端与开关S、阻值为R1的定值电阻和电阻箱R2相连,不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g.现在闭合开关S,将金属棒由静止释放.
图1
(1)判断金属棒ab中电流的方向;
(2)若电阻箱R2接入电路的阻值为0,当金属棒下降高度为h时,速度为v,求此过程中定值电阻R1上产生的焦耳热Q
(3)B=0.40T、L=0.50m、α=37°时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系如图乙所示,g取10 m/s2,sin 37°=0.6,cos 37°=0.8,求R1的大小和金属棒的质量m.
解题指导 (1)由右手定则可知,金属棒ab中的电流方向为ba.
(2)由能量守恒定律可知,金属棒减少的重力势能等于增加的动能和电路中产生的焦耳热
mghmv2Q
解得:Qmghmv2.
(3)设最大速度为vm时,切割磁感线产生的感应电动势EBLvm
由闭合电路欧姆定律得:
I
b端向a端看,金属棒受力如图所示
金属棒达到最大速度时满足
mgsinαBIL=0
由以上三式得最大速度:
  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册