课后限时集训(十八)动量守恒定律及其应用
(建议用时:40分钟)
[基础对点练]
题组一:动量守恒定律的理解和判断
1.(2019·衡水检测)关于系统动量守恒的条件,下列说法正确的是( )
A.只要系统内存在摩擦力,系统动量就不可能守恒
B.只要系统中有一个物体具有加速度,系统动量就不守恒
C.只要系统所受的合外力为零,系统动量就守恒
D.系统中所有物体的加速度为零时,系统的总动量不一定守恒
C [根据动量守恒的条件可知A、B错误,C正确;系统中所有物体加速度为零时,各物体速度恒定,动量恒定,系统中总动量一定守恒,D错误。]
2.(多选)如图所示,质量为M的三角形滑块置于水平光滑的地面上,斜面亦光滑,当质量为m的滑块沿斜面下滑的过程中,M与m组成的系统( )
A.由于不受摩擦力,系统动量守恒
B.由于地面对系统的支持力大小不等于系统所受重力大小,故系统动量不守恒
C.系统水平方向不受外力,故系统水平方向动量守恒
D.M对m作用有水平方向分力,故系统水平方向动量也不守恒
BC [水平方向不受外力和摩擦,所以系统水平方向动量守恒,C正确;竖直方向系统所受重力和支持力大小不等,系统竖直方向动量不守恒,B正确。]
题组二:碰撞、爆炸与反冲
3.(2019·桂林质检)如图所示,光滑水平面上有大小相同的A、B两个小球在同一直线上运动。两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为8 kg·m/s,运动过程中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则( )
A.右方为A球,碰撞后A、B两球的速度大小之比为2∶3
B.右方为A球,碰撞后A、B两球的速度大小之比为1∶6
C.左方为A球,碰撞后A、B两球的速度大小之比为2∶3
D.左方为A球,碰撞后A、B两球的速度大小之比为1∶6
C [A、B两球发生碰撞,规定向右为正方向,由动量守恒定律可得ΔpA=-ΔpB,由于碰后A球的动量增量为负值,所以右边不可能是A球,若是A球则动量的增量应该是正值,因此碰撞后A球的动量为4 kg·m/s,所以碰撞后B球的动量是增加的,为12 kg·m/s,由于mB=2mA,所以碰撞后A、B两球速度大小之比为2∶3,故C正确。]
4.一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1。不计质量损失,取重力加速度g=10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是( )
A B
C D
B [由h=gt2可知,爆炸后甲、乙两块做平抛运动的时间t=1 s,爆炸过程中,爆炸力对沿原方向运动的一块的冲量沿运动方向,故这一块的速度必然增大,即v>2 m/s,因此水平位移大于2 m,C、D项错误;甲、乙两块在爆炸前后,水平方向不受外力,故水平方向动量守恒,即甲、乙两块的动量改变量大小相等,两块质量比为3∶1,所以速度变化量之比为1∶3,由平抛运动水平方向上x=v0t,所以A图中,v乙=-0.5 m/s,v甲=2.5 m/s,Δv乙=2.5 m/s,Δv甲=0.5 m/s,A项错误;B图中,v乙=0.5 m/s,v甲=2.5 m/s,Δv乙=1.5 m/s,Δv甲=0.5 m/s,B项正确。]
5.假设进行太空行走的宇航员A和B的质量分别为mA和mB,他们携手匀速远离空间站,相对空间站的速度为v0。某时刻A将B向空间站方向轻推,A的速度变为vA,B的速度变为vB,则下列各关系式中正确的是( )
A.(mA+mB)v0=mAvA-mBvB
B.(mA+mB)v0=mAvA+mB(vA+v0)
C.(mA+mB)v0=mAvA+mB(vA+vB)
D.(mA+mB)v0=mAvA+mBvB
D [本题中的各个速度都是相对于空间站的,不需要转换。相互作用前系统的总动量为(mA+mB)v0,A将B向空间站方向轻推后,A的速度变为vA,B的速度变为vB,动量分别为mAvA、mBvB,根据动量守恒定律得(mA+mB)v0=mAvA+mBvB,故D正确。]