1.给定函数:①y=x,②y=log(x+1),③y=|x-1|,④y=2x+1.其中在区间(0,1)上单调递减的函数序号是( )
A.①② B.②③
C.③④ D.①④
解析:B [①y=x在(0,1)上递增;②∵t=x+1在(0,1)上递增,且0<<1,故y=log(x+1)在(0,1)上递减;③结合图象可知y=|x-1|在(0,1)上递减;④∵u=x+1在(0,1)上递增,且2>1,故y=2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.]
2.已知函数f(x)=2ax2+4(a-3)x+5在区间(-∞,3)上是减函数,则a的取值范围是( )
A. B.
C. D.
解析:D [当a=0时,f(x)=-12x+5,在(-∞,3)上