1.如下四个函数图像与x轴均有交点,但不宜用二分法求交点横坐标的是( )
解析:由于用二分法求零点的使用条件为“变号零点”,而B中零点为不变号零点,不宜用二分法求.
答案:B
2.用“二分法”可求近似解,对于精确度ε说法正确的是( )
A.ε越大,零点的精确度越高
B.ε越大,零点的精确度越低
C.重复计算次数就是ε
D.重复计算次数与ε无关
答案:B
3.用二分法求函数f(x)=x3+5的零点可以取的初始区间是( )
A.[-2,1] B.[-1,0]
C.[0,1] D.[1,2]
解析:f(-2)=-3<0,f(1)=6>0,
逐次验证得出初始区间为A.
答案:A
4.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )
A.0.68 B.0.72
C.0.7 D.0.6
解析:已知f(0.64)<0,f(0.72)>0,则函数f(x)的零点的初始区间为[0.64,0.72].又0.68=×(0.64+0.72),且f(0.68)<0,所以零点在区间[0.68,0.72]上,且该区间的左、右端点精确到0.1所取的近似值都是0.7,所以0.7就是所求函数的一个正实数零点的近似值.
答案:C