题型一 范围问题
例1 (2022·临沂模拟)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆C上,以PF1为直径的圆E:x2+2=过焦点F2.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为A,与x轴不垂直的直线l交椭圆C于M,N两点(M,N与A点不重合),且满足AM⊥AN,点Q为MN的中点,求直线MN与AQ的斜率之积的取值范围.
解 (1)在圆E的方程中,令y=0,得x2=3,
解得x=±,
所以F1,F2的坐标分别为(-,0),(,0).
因为E,
又因为|OE|=|F2P|,OE∥F2P,
所以点P的坐标为,
所以2a=|PF1|+|PF2|=2×+=4,
得a=2,b=1,
即椭圆C的方程为+y2=1.
(2)右顶点为A(2,0),由题意可知直线AM的斜率存在且不为0,
设直线AM的方程为y=k(x-2),
由MN与x轴不垂直,故k≠±1.
由
得(1+4k2)x2-16k2x+16k2-4=0,
设M(x1,y1),N(x2,y2),又点A(2,0),
则由根与系数的关系可得2x1=,