§2 实际问题的函数建模
问题导学
一、二次函数模型的应用
活动与探究1
某租赁公司出租同一型号的设备40套,当每套月租金为270元时,恰好全部租出.在此基础上,每套月租金每增加10元,就少租出1套设备,而未租出的设备每月需支付各种费用每套20元.设每套设备实际月租金为x元(x≥270元),月收益为y元(总收益=设备租金收入- 未租出设备费用).
(1)求y与x之间的函数关系式;
(2)当x为何值时,月收益最大?最大值是多少?
迁移与应用
某旅游公司的最大接待量为1 000人,为保证公司正常运作,实际的接待量x要小于1 000,留出适当的空闲量(如:当接待量为800人时,则空闲量为200人),空闲量与最大接待量的比值叫作空闲率.已知该公司4月份接待游客的月增加量y(人)和实际接待量x(人)与空闲率的乘积成正比.(设比例系数k>0)
(1)写出y关于x的函数关系式,并指出定义域;
(2)当k=时,求4月份游客日增加量的最大值.