3~8讲,我们对数学思想方法进行了探讨,从第九讲开始我们对数学解题方法进行探讨。数学问题中,常用的数学解题方法有待定系数法、配方法、换元法、数学归纳法、反证法等。
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。 换元法又称辅助元素法、变量代换法。换元的实质是转化,关键是构造元或设元,理论依据是等量代换,目的是通过引进新的变量,把分散的条件联系起来,把隐含的条件显露出来,把条件与结论联系起来,把不熟悉的形式变为熟悉的形式,把复杂的计算和推证简化,把非标准型问题标准化等。
通过换元,可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,化代数式为三角式等。在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元,三角换元,均值换元。
结合2013年全国各地高考的实例,我们从下面三方面探讨换元法的应用:(1)局部换元法的应用;(2)三角换元法的应用;(3)均值换元法的应用。
一、局部换元法的应用:局部换元,又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。
典型例题:
例1. (2013年安徽省理5分)设i是虚数单位, 是复数z的共轭复数,若 ,则z=【 】
A.1+i B.1-I C.-1+i D.-1-i