2014高考对本内容的 考查主要有:
(1)一元二次不等式是C级要求,线性规划是A级要求.
(2)基本不等式是C级要求,理解基本不等式在不等式证明、函数最值的求解方面的重要应用.试题类型可能是填空题,同时在解答题中经常与函数、实际应用题综合考查,构成中高档题.
1.不等式的解法
(1)求解一元二次不等式的基本思路:先化为一般形式ax2+bx+c>0(a>0),再求相应一元二次方程ax2+bx+c=0(a>0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.
(2)解含参数不等式的难点在于对参数的恰当分类,关键是找到对参数进行讨论的原因.确定好分类标准、层次清楚地求解.
2 .基本不等式[来源:Zxxk.Com]
(1)基本不等式a2+b2≥2ab取等号的条件是当且仅当a=b.
(2)几个重要的不等式:①ab≤a+b22(a,b∈R).
② a2+b22≥a+b2≥ab≥2aba+b(a>0,b>0).
③a+1a≥2(a> 0,当a=1时等号成立).