第3讲 导数的应用(二)
一、选择题
1.若函数y=f(x)可导,则“f′(x)=0有实根”是“f(x)有极值”的 ( ).
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分也不必要条件
答案 A
2.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是 ( ).
A.(-1,2) B.(-∞,-3)∪(6,+∞)
C.(-3,6) D.(-∞,-1)∪(2,+∞)
解析 f′(x)=3x2+2ax+(a+6),因为函数有极大值和极小值,所以f′(x)=0有两个不相等的实数根,所以Δ=4a2-4×3(a+6)>0,解得a<-3或a>6.
答案 B
3.设f(x)是一个三次函数,f′(x)为其导函数,如图所示的是y=x·f′(x)的图象的一部分,则f(x)的极大值与极小值分别是 ( ).
A.f(1)与f(-1) B.f(-1)与f(1)
C.f(-2)与f(2) D.f(2)与f(-2)