一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.复数为纯虚数,则它的共轭复数是()
A. 2i B. ﹣2i C. i D.﹣i
考点: 复数代数形式的乘除运算.
专题: 数系的扩充和复数.
分析: 利用复数的运算法则、纯虚数与共轭复数的定义即可得出.
解答: 解:复数==为纯虚数,
∴=0,≠0,
解得a=1.
∴=i
则它的共轭复数是﹣i.
故选:D.
点评: 本题考查了复数的运算法则、纯虚数与共轭复数的定义,属于基础题.
2.已知集合A={x|x(x﹣3)<0},B={x||x﹣1|<2},则“x∈A”是“x∈B”的()